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Abstract. This article deals with experimental 
identification and control of laboratory helicopter model 
CE 150 manufactured by company Humusoft. Structure of 
the identified system was approximated by linear 
black-box models. Discrete Input/Output Auto-Regressive 
Moving Average model with eXternal input (ARMAX) and 
its state space equivalent were used. Parameters of the 
models were estimated by regression techniques using 
System Identification Toolbox for Matlab. Acquired 
models were validated using simulations, residual 
analysis and real-time control. Input/output data 
necessary for identification were obtained by 
measurements from laboratory model and were processed 
using Real-Time Toolbox for Matlab. Based on acquired 
mathematical models input/output and state space 
controllers were designed (input/output pole placement 
with integration, state space pole placement with 
integration and observer). Designed controllers were 
implemented in Matlab environment using the Real Time 
Toolbox and their performance was verified by real-time 
control of the helicopter model. 
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1. Introduction 

A great deal of attention has been centered on the field of 
automation in various domains of industry thanks to 
increased demand for safety, fault proof and efficient 
usage of natural resources. Performance and reliability of 
control algorithms which are the key part of automation 
depend heavily on the mathematical model of controlled 
system. 

 To obtain such a model several approaches are 
available and we term this procedure as system 
identification. Main purpose of the identification 
procedure and corresponding model is to capture the 
underlying dynamics of the phenomena in consideration. 

 Depending on the amount of a priori information 
available we divide the models as follows. We say the 
phenomena can be modeled with a white-box model if all 
the necessary information is available a priori. Procedure 
that leads to white-box model is called an analytical 
identification. If there is no information about the 
dynamics of identified system available a priori we call 
the corresponding model a black-box model. Knowledge 
about such system is then gained through the analysis of 
the input/output measurements and is called experimental 
identification. Situation most widely encountered in 
practice is when both analytical and experimental 
identification are used and the resulting model is called a 
grey-box model. Authoritative account on this subject can 
be found in [1], [2], [3]. 

 This article is devoted to experimental 
identification and control of laboratory helicopter model 
CE 150 manufactured by company Humusoft [4]. Several 
researchers have already reported some results on the 
identification of this dynamical system [5], [6]. 

 The structure of nonlinear model was proposed in 
[5], while some parts of the mathematical model were 
approximated by black-box models. Author describes a 
way of computing some of the parameters of this model, 
but for the purpose of the control algorithms design he 
abandons the nonlinear model and proposes to identify 
the linear model from the input/output (I/O) data. 

 Analytical identification based on primary 
physical laws is carried out in [6]. Parameters of 
proposed model are acquired either by direct 
measurements or by the least-squares method. Linear 
models for the control algorithms design are then 
obtained by linearization around some suitable operating 
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point. 

 The application of optimal control is studied in 
detail in [7] and [8]. 

 Aim of this article is to further develop the idea of 
obtaining parametric models with linear structure by 
means of experimental identification proposed in [5]. 
Also to point out the possibility to bypass the analytical 
identification which relies on careful application of 
physical laws. And instead create the black-box models 
using only regression techniques and measured I/O data 
[9], [10]. 

 This article is structured as follows. The second 
section covers the description of the laboratory model, 
structure of the mathematical models, parameters 
estimation and model validation methods. In the third 
section identification and validation results are presented. 
The fourth section is devoted to control algorithms design 
and implementation and presentation of results of the 
real-time control. The fifth section summarizes the article 
and points out the future work. 

2. Procedure of Experimental 
Identification of Laboratory 
Helicopter Model CE 150 

The general setup for experimental identification is 
demonstrated on Fig. 1. The experiment design and data 
acquisition require a thorough knowledge of technical 
details of the laboratory model. Numerous measurements 
have to be carried out for purpose of creating several I/O 
data sets. Structure of the model defines a whole set of 
candidate models. The identification method should then 
select the best model from this set. As a last step 
validation of the model should be done. 

 
Fig. 1: System identification procedure. 

2.1. Experiment Design and Data 
Acquisition 

Laboratory helicopter model CE 150 is composed of the 
body which carries two DC electromotors that drive two 
propellers. The body can perform rotational movement 
around two mutually perpendicular axes. Body has thus 
two degrees of freedom, one in elevation and one in 
azimuth. The angular velocity of propellers which are 
driven by the electromotor is proportional to the 
command inputs generated by computer. Centre of mass 
of the helicopter is controlled by the servomechanism. 
The helicopter model is a multivariable dynamical system 
with up to three controllable inputs and two measurable 
outputs. Inputs and outputs are coupled. System is highly 
nonlinear and at least of order six depending on modeling 
precision. Schematic model of the helicopter is 
demonstrated on Fig. 2. 

 
Fig. 2: Schematic model of laboratory helicopter model [5]. 

 Physical meaning of the variables of laboratory 
helicopter model used in Fig. 2 is explained in Tab. 1. 

Tab.1: Physical meaning of variables used in helicopter schematic 
model [5]. 

Variable Variable description 

u1 Voltage controlling main electromotor 

u2 Voltage controlling side electromotor 

u3 Voltage controlling the center of mass servo 

yΦ Elevation angle 

yψ Azimuth angle 

  Elevation incremental sensor output 

ψ Azimuth incremental sensor output 
 

 Interface between the laboratory model and 
computer is realized using an interfacing unit and a 
multifunctional I/O card MF 614 (or its equivalent newer 
versions). Technical parameters of the laboratory model 
are listed in following tables. 
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Tab.2: Technical parameters of helicopter body [5]. 

Helicopter body 

Rotation range ±45º in elevation, ±130º in azimuth 

Main motor 
DC electromotor, max. volt. 12 [V], 
0 – 6 [A], max. torque 9000 rpm. 

Side motor 
DC electromotor, max. volt. 6 [V],  
0 – 4 [A], max. torque 12000 rpm. 

Servo Autonomous PWM servo system 

Angles 
measurement 

Incremental sensors 

 

Tab.3: Technical parameters of interfacing unit [5]. 

Interfacing unit 

Sensors data 
processing  

Based on inc. sensors logic 

Power amplifiers 
PWM driven DC amp., 0 – 240 [W], 
12 [V] 

 

 Channels of the I/O card MF614 are connected 
with computer using the Real Time Toolbox for Matlab 
[10]. Technical details of this card can be found in [12]. 
Calibration of the sensors is automatic but requires initial 
position of the helicopter body to the very left and 
bottom. Data acquisition is realized according to the flow 
diagram depicted on Fig. 3. 

 

Fig. 3: Flow diagram of I/O data acquisition. 

2.2. Model Structure Selection 

Either linear or nonlinear structure of the model can be 
chosen. However linear structure is selected because the 
theory of discrete linear systems is used for the control 
algorithms design. Linear digital control is used due to 
the fast dynamics of considered system. Implementation 
of nonlinear control algorithms is much more 
complicated and requires much more computational 

power. 

 From the vast linear framework the I/O SISO 
(Single Input Single Output) ARMAX (AutoRegressive 
Moving Average with eXternal input) [1] model will be 
used. Structure of the considered model is defined by 
following difference equation 
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1
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where u(k) stands for model input, y(k) for model output 
and ζ(k) represents a random process (white noise), which 
is used in MA (Moving Average) model of disturbance.  

 This model is evaluated in discrete time 
instants skT  , where Ts stands for sampling period. 

Equation (1) can be also expressed as follows 
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where polynomials 
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contains weighting coefficients of lagged input, output 
and disturbance samples. The operator q is defined as 
follows 
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. (4) 

 Equation for the one step ahead output prediction 
is 

1ˆ( | ) ( ) ( ) [1 ( )] ( ) [ ( ) 1] ( ) ,y k B q u k A q y k C q k    θ  (5) 

where 

 
ˆ( ) ( ) ( | )k y k y k   θ  (6) 

represents prediction error. For the ease of notation the 
vector of regressors φ(k, θ) and the vector of parameters 
θ(k) are introduced 
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Equation (5) can then be expressed as a pseudo linear 
regression 

 
ˆ( | ) ( , ) .Ty k kθ φ θ θ  (8) 

 The linear state space SISO models will be used as 
well. This model is defined by following system of 
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equations 

 
T
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( ) ( ) ( ) .
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x Ax b η

c x
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Vector x(k)∊ℝn is the state vector, u(k)∊ℝ stands for 

input and y(k)∊ℝ stands for output of the system. Matrix 

A∊ℝn×n and vectors b∊ℝn and c∊ℝn contain model's 

parameters. It is assumed that the process noise η(k)∊ℝn 

and the measurement noise μ(k)∊ℝ can be represented by 
independent random sequences with Gaussian probability 
distribution and zero mean. Optimal predictor for this 
system is the Kalman filter [1] which can be expressed as 

 
T
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where L(θ) is the Kalman gain, ˆ ( , )kx θ  is the state 

estimate, θ is the vector containing parameters of the 
model and ε(k) is the prediction error. Moreover system 
of equations (10) can be expressed as follows 

 ( ) ( , ) ( ) ( , ) ( ) .y k G q u k H q k θ θ  (11) 

Detailed overview of standard linear black-box models is 
given in [1]. 

2.3. Methods for Estimation of Model 
Parameters 

Estimation of unknown parameters of the I/O and state 
space model can be realized by minimization of 
prediction error. Parameter estimation process is 
demonstrated on Fig. 4. 

 
Fig. 4: Parameter estimation process. 

 System is excited by a suitable input signal u(k). 
Corresponding response signal y(k) is measured on the 
output. Output signal is composed from the real system 
output yo(k) and immeasurable (or unmeasured) 
disturbances ed(k). It is supposed that the disturbances 
affecting the output can be modeled by a random process. 
This process is obtained as a response of a certain 
dynamical system to white noise ζ(k). This dynamical 
system is called the disturbance model. 

 If the vector of parameters θ is unknown but a 
dataset of I/O measurements is available an obvious 

approach is to choose the vector θ in such a way that 
output of the model ˆ( )y k would fit the measured system 

output y(k) as close as possible. Measure of fitness can be 
in general expressed by criterion 

 1
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where ZN stands for data vector which includes the I/O 
data until the time NTs  and for this particular case  

 2( ( , ), ) ( , )l k k  θ θ θ . (13)  

Clearly in the light of the criterion (12) the output ˆ( )y k  

will fit the y(k) as close as possible when the criterion 
(12) attains its minimum with respect to vector θ i.e. 

 ˆ ˆ ( ) arg min ( ) .N N
N N NV θ θ Z θ Z,  (14) 

Generally it is not possible to minimize the function (12) 
by analytical methods and the solution has to be sought 
by the iterative numerical optimization methods. For the 
special case of scalar output and quadratic criterion 
update of the estimate of the vector of parameters is given 
as 
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where ( )ˆ i
Nθ denotes the estimate of vector of parameters 

for the ith iteration. Vector ( )' ˆ( , )i N
N NV θ Z stands for the 

gradient and can be computed as 
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where σ(k, θ) denotes gradient matrix of ˆ( | )y k θ with 

respect to θ. In addition gradient (16) is modified by the 

matrix  i
NR . Step size  i

Nμ  is chosen so that 

 ( 1) ( )ˆ ˆ( , ) ( , ) .i iN N
N NN N

 V θ Z V θ Z  (17) 

According to selection of matrix  i
NR it is possible to 

obtain several variations of this method e.g. Newton, 
Gauss-Newton, Levenberg-Marquard. Further details and 
references about the general prediction error framework 
can be found in [1]. 

2.4. Methods for Validation of Regression 
Models 

To verify if the model has captured the underlying 
dynamics of the identified system one can compare 
measured and simulated output of the system. Outputs 
should be similar and the error should be close to zero. 
Different dataset should be used for the purpose of 
validation.  
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 Validation is frequently supplemented by residual 
analysis. Two principal mechanisms are used the 
whiteness and the independence test. Performance of the 
model is then evaluated according to prediction error ε(k) 
called also a residue. Residuals represent the part of the 
data that the model could not reproduce [1]. 

 According to whiteness test residuals of a good 
model are mutually uncorrelated, i.e. sequence of the 
residuals is represented by a white noise [1]. Simply put 
model should capture the essential dynamics between the 
inputs and outputs and the only unexplained data come 
for random independent disturbances. Therefore if the 
residuals are correlated an unmodeled functional relation 
is present in the data. Correlation of residuals can be 
examined by AutoCorrelation Function (ACF). The 
whiteness test verifies both model of dynamics and the 
disturbance model. 

 According to independence test a good model has 
the residuals and past inputs mutually uncorrelated [1]. 
Indication of correlation means that the model doesn’t 
explain how part of the output is related with these 
inputs. Correlation of residuals and past inputs can be 
examined by Cross-Correlation Function (CCF). The 
independence test verifies the model of dynamics. 

 In this particular case the independence test is of 
main interest. The specific results of validation regarding 
the laboratory helicopter model will be discussed in 
section 3.1. 

3. Elevation Dynamics Identification 

Laboratory helicopter model is a nonlinear dynamical 
system. However this nonlinear behavior can be 
approximated by linear model around some small 
neighborhood. Moreover the system contains multiple 
inputs and multiple outputs. However the mechanical 
construction allows disabling the motion either in 
elevation or azimuth. This enables independent 
identification of elevation or azimuth subsystem by SISO 
models. Finally unstable nature of this dynamical system 
further complicates the identification procedure. However 
a stable operating range exists and it can be used for open 
loop data acquisition. 

3.1. Input/Output and State Space Model 

Sampling period for open loop I/O data acquisition was 
set to Ts = 0,01 [s]. Operating point was chosen so that 
the steady state value of input was u1,ss = 0,53 [–] and 
steady state value of output was  = - 0,17π [rad]. System 

was excited by pseudo random binary signal u1(k) 
demonstrated on Fig. 5. 

 
Fig. 5: Pseudorandom binary excitation input u1. 

 Computation of the parameter estimates was 
realized by the System Identification Toolbox for Matlab. 
Function pem was used to obtain the coefficients of the 
state space model and function armax was used to 
obtain the coefficients of the ARMAX model [13], [14]. 
The resulting matrices of the state space model were 
obtained in the following form 

 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

, , .

a a a b c

a a a b c

a a a b c

     
            
          
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 The ARMAX polynomials were obtained as 
follows 
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 Validation of acquired parametric models of the 
elevation subsystem was carried out by both comparison 
of real ( ) and simulated ( M) output and using the 

residual analysis. Different datasets were used for 
identification and validation purposes. Validation results 
for the state space model are identical except for some 
minor differences and therefore were omitted. Simulated 
and measured responses of the elevation angle  (k) to 

the excitation signal are compared on Fig. 6. This 
comparison shows that the underlying dynamics were 
successfully captured. 
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Fig. 6: Elevation angle - measurement  (k) and simulation ( M(k)). 

 To analyze how much information from data was 
explained by the models residual analysis was used. 
Validation results for the I/O ARMAX model are given 
on Fig. 7 and Fig. 8. 

 
Fig. 7: Autocorrelation function of the residuals ε(k). 

 
Fig. 8: Cross correlation function between ε(k) and u1(k). 

 Indeed from the results of the whiteness test 
demonstrated on Fig. 7 one can observe that all the 
information from the data was explained and only 
independent random disturbances remained. The 
independence test demonstrated on Fig. 8 shows that the 
residuals are uncorrelated with the past inputs and that 
the model explains how past outputs are related with the 

output. Regarding the validation of state space model 
same conclusion can be made [9]. Acquired models 
should be used in control algorithms design for final 
verification. 

4. Verification of Identification 
Results in Control Algorithms of 
Laboratory Model 

Parametric models of elevation subsystem were created 
for the purposes of control algorithms design. Therefore it 
is possible to verify their performance also on the basis of 
control algorithms results. 

4.1. Control Algorithm Design Based on the 
Input/Output Model 

Such control algorithm design employs the transfer 
function of the considered system. Result is generally 
a dynamical controller with one or two degrees of 
freedom. 

 Suppose the transfer function of order na is in the 
following form 
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while following holds b0 = 0 a nb ≤ na – 1. Let the transfer 
function of one degree of freedom (1DoF) controller be  
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The goal of control design procedure is to find a suitable 
vector of parameters θreg = (d0, d1, . . ., dm, c1, . . ., cm) 
containing 2m + 1 controller parameters. A suitable 
method for calculation of these parameters is for example 
pole placement method. This method is covered in detail 
in [15]. 

 Transfer function of the closed loop with 1DoF 
controller can be written as 
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where Acl(z, θ) is the characteristic polynomial of 
a closed loop and following holds 
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Controller can be then designed in such a way so that 
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location of poles of the closed loop was in agreement 
with desired location of poles pi

* , i = 1,…,m + na. 
Desired location can be expressed by a desired 
characteristic polynomial Acl

*(z) of the closed loop. 

 

1

* *
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1* * *
1 0
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
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 (24) 

For arbitrary placement of the closed loop poles a 1DoF 
dynamical controller of an order of m = n – 1 is sufficient. 
The closed loop is determined by a transfer function of 
order na + m = 2na − 1 and it is therefore required to place 
2na – 1 poles. If the characteristic polynomial of the 
closed loop A*

cl (z) is chosen then the polynomials C(z) 
and D(z) can be determined as a solution of the following 
diophantine equation 

 *( ) ( ) ( ) ( ) ( ) .clA z C z B z D z A z   (25) 

The algorithmic solution of (25) can be found in [9]. 

4.2. Feed Forward Nonlinearity 
Compensator 

To deal with the nonlinear nature of the elevation 
dynamics feedback control structure was augmented with 
a feed forward controller. This controller was realized by 
a polynomial of 3rd order  

 2 3
0 1 2 3( ( )) ( ) ( ) ( ) .ffu k g g k g k g k        (26) 

 Coefficients of the polynomial were determined 
by least squares method according to measured steady 
state values of elevation angle and corresponding input 
values. Measured and predicted data are compared on 
Fig. 9. 

 
Fig. 9: Feed forward control law based on the elevation angle. 

 The structure of the resulting control algorithm for 
the laboratory helicopter model is depicted on Fig. 10. 

 
Fig. 10: Block diagram of elevation tracking control structure for 

helicopter laboratory model. 

 Flowchart describing the implementation of the 
real time control is given on Fig. 11 and the complete 
flowchart of the control algorithm is given in [9]. 

 
Fig. 11: Flowchart of real time tracking implementation. 

 Assignment y(k) ← y*(t0 + kTs) describes sampling 
of the continuous output function. In contrary assignment 
u*(t0+kTvz) ← ufb(k) + uff(k) expresses registration of the 
discrete control to I/O card and generation of 
corresponding voltage for main electromotor. Integer N 
stands for number of samples of the reference signal w(k). 
Coefficients of the feedback regulator are denoted as ci a 
di and finally e(k) stands for the control error. Real time 
communication between the Matlab environment and the 
I/O card was realized by the Real Time Toolbox for 
Matlab. Transfer function of the feedback controller was 
in the following form 

 
1 2

0 1 2
1 2

1 2

( )
( ) .

( ) 1
fb

c c z c zU z
F z

E z d z d z

 

 

 
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 
 (27) 

 Results of the tracking using the control algorithm, 

 ( ) ( ) ( )fb ffu k u k u k   , (28) 

based on the input output model are demonstrated on 
Fig. 12 and Fig. 13. Depending on the requirements 
control effort and the tracking performance can be 
adjusted by suitable placement of the closed loop poles. 
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Fig. 12: Control input for the helicopter elevation tracking based on 

input output model. 

 
Fig. 13: Reference and measured elevation angle for the helicopter 

tracking based on the input output model. 

4.3. Control Algorithm Design Based on the 
State Space Model 

Besides the I/O SISO model of elevation subsystem the 
state space model was also obtained. To verify this model 
in the control algorithm design a state space controller is 
also proposed. 

 Synthesis of the state space control is based upon 
the following system of equations 

 
( 1) ( ) ( )

( ) ( ) ( ) ,T

k k u k

y k k du k

  

 

x Ax b

c x
 (29) 

where x(k) ∊ ℝn , u(k) ∊ ℝ, y(k) ∊ ℝ , A ∊ ℝn×n, b ∊ 
ℝn, c ∊ ℝn, d ∊ ℝ. 

 The design goal for the control algorithm 

 ( ) ( ) ( ) ,Tu k k k k x  (30) 

is to select a vector k ∊ ℝn such that the set of eigen 
values for the matrix of the closed loop dynamics Acl = A 
– bkT was as follows 

 
1

, 1, 1, 2, , ,
p

h h h
h

z z h p p n


     
  

  (31) 

where 1 ≤ ph ≤ 1 is the multiplicity of the hth eigen value 
zh [16]. The proportional nature of the control algorithm 
(30) causes the steady state error when the persistent 
disturbance is present. To eliminate this error an 
integrating element is incorporated into the state 
feedback. 

 Integrator can be described by as follows 

 ( 1) ( ) ( ) ,v k v k me k    (32) 

 ( ) ( ) ( )e k w k y k   (33) 

where 0,1s

i

T
m

T
  , Ts is the sampling period, Ti stands 

for integrator time constant and e(k) is the regulation 
error. If the control algorithm acquires following form 

 ( ) ( ) ( ) ,Tu k k v k  k x  (34) 

then it is possible to create an augmented state space 
description of the system (29). Vector of the feedback 
gains k can be then designed by suitable placement of the 
closed loop poles by several approaches [16], [17]. 

 For the state vector estimation a deterministic 
observer was used. Vector of the observer gains was 
designed by the function place of the Control Toolbox 
for Matlab. Observer poles were chosen so that the 
observer dynamics were faster than the dynamics of the 
closed loop.  

 Block diagram of the control algorithm is depicted 
on Fig. 14. 

 
Fig. 14: Block diagram for the state space control algorithm with static 

error cancelation. 

 Part of the flowchart that deals with the real time 
control is demonstrated on Fig. 15. 
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Fig. 15: Flowchart for the real time state space control. 

 Results of the real time tracking with the state 
space control algorithm with integration for the 
laboratory helicopter model are demonstrated on Fig. 16 
and Fig. 17. 

 
Fig. 16: Control input generated by the state space controller with 

integration for the real time helicopter control. 

 
Fig. 17: Real time elevation angle tracking by the state space controller. 

 State feedback is superior to the I/O feedback due 
to utilization of complete information about the state of 
the system. However this information has to be 
reconstructed from the I/O measurement. Therefore 

a state feedback augmented with an observer is yet 
another way of designing an I/O dynamic controller. 

 This section was devoted to the elevation control 
of laboratory helicopter model. Both I/O and state space 
approach was used. Control algorithms were designed 
according to identified I/O and state space models. 
Identification was carried out using open loop 
measurements of the elevation angle. Identification of the 
elevation subsystem around the unstable operating point 
requires stabilizing the helicopter model first. This can be 
done using controllers designed here. To identify the 
azimuth subsystem again closed loop identification has to 
be used. Results of the control algorithms based upon the 
I/O and state space models obtained by closed loop 
identification for elevation and azimuth subsystem can be 
found in [9]. 

5. Conclusion 

This article was devoted to experimental identification 
and control of the laboratory helicopter model CE 150 
manufactured by company Humusoft. It was showed that 
linear dynamical I/O and state space models can be 
obtained only using I/O measurements and regression 
techniques omitting the tedious application of physical 
laws. Acquired models were validated using comparison 
of the measured and simulated outputs of the laboratory 
helicopter model and also by the residual analysis. 

 Advantage of proposed approach is that directly 
discrete linear models suitable for control algorithms 
design were obtained and neither linearization nor 
discretization were needed. Both I/O and state space 
control algorithms were designed, implemented and 
tested by a real time control of the laboratory helicopter 
model CE 150. Implementation of the control algorithms 
was carried out using Real Time Toolbox for Matlab. 
Control results verify that the parametric models obtained 
by application of the System Identification Toolbox 
functions are valid. 

 All in all it can be seen that correct use of 
regression techniques can save much time and effort 
during the modeling stage. Moreover when dealing with 
physical phenomena where underlying dynamics are not 
well understood this may be the only way of obtaining 
reliable mathematical model at all. 

 In comparison to other approaches, e.g. black-box 
nonlinear nonparametric models or nonlinear grey-box 
models based on physical insight, chosen approach lacks 
the generalization properties of the nonlinear models. 
However the procedures that leads to mentioned 
nonlinear models are much more complicated and time 
demanding. Furthermore design of a nonlinear controller 
that could utilize the nonlinear structure of the model is 
also nontrivial. In view of the nonlinear nature of the 
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system, use of the nonlinear model structure should result 
in its increased generalization and prediction possibilities. 
Black-box or grey-box nonlinear model structure can be 
used. Parameter estimation can be realized using the 
standard optimization techniques [19], or using 
approximate nonlinear filtering algorithms, e.g. Extended 
Kalman filtering [20], Unscented Kalman filtering [21]. 
To exploit the nonlinear structure of the model nonlinear 
controllers and observers could be considered as well 
[22], [23]. 
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